Improved Mixed-Boundary Component-Mode Representation for Structural Dynamic Analysis

(Short Version of Briefing)

Arya Majed, Ph.D. Ed Henkel Applied Structural Dynamics, Inc. www.AppliedStructuralDynamics.com

> Applied Structural Dynamics, Inc.

ASD-TB-05-009 Updated:10/22/2005

ASD's RFMB Derivation

- Derivation impetus: What if you "add" extra degrees of freedom to a Hurty/Craig-Bampton representation via residual flexibility <u>without</u> changing the normal mode boundary conditions?
- Derivation Achievements
 - Developed a generalized <u>mixed</u>-boundary dynamic math model reduction method that exactly reduces to the time-tested methods of:
 - Hurty/Craig-Bampton (all fixed-boundary, i.e., all B-set)
 - Rubin/MacNeal for the (all free-boundary, i.e., all C-set)
 - Demonstrated that Hurty/Craig-Bampton and Rubin/MacNeal are actually just <u>special cases</u> of a more general formulation
 - Hurty/Craig-Bampton and Rubin/MacNeal previously thought of as being completely distinct methods
 - Demonstrated excellent accuracy for all mixed-boundary combinations (B-set + C-set cases)
 - Demonstrated rapid convergence relative to the classic use of the "over-constrained" Hurty/Craig-Bampton formulation

RFMB Coordinate Transformation

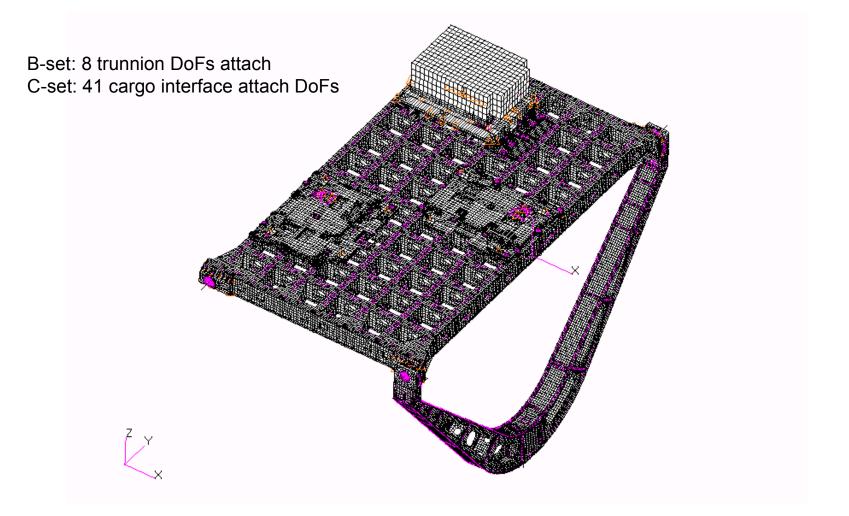
- Residual Flexibility Mixed-Boundary (RFMB) coordinate transformation
 - Utilizing standard NASTRAN set notation
 - Please see paper for full derivation details

$$\begin{pmatrix} x_{b} \\ x_{c} \\ x_{o} \end{pmatrix} = \begin{bmatrix} I_{bb} & 0 & 0 \\ 0 & I_{cc} & 0 \\ \psi_{ob}^{C} - {}^{R}g_{oc} {}^{R}g_{cc}^{-1}\psi_{cb}^{C} {}^{R}g_{oc} {}^{R}g_{cc}^{-1} \phi_{ok}^{N} - {}^{R}g_{oc} {}^{R}g_{cc}^{-1}\phi_{ck}^{N} \end{bmatrix} \begin{pmatrix} x_{b} \\ x_{c} \\ q_{k} \end{pmatrix}$$

Majed, A., Henkel, E. E., and Wilson, C., "Improved Method of Mixed-Boundary Component Representation for Structural Dynamic Analysis," AIAA Journal of Spacecraft and Rockets, Vol. 42, No. 5, September-October 2005.

RFMB Facts:

- Developed by Applied Structural Dynamics, Inc.
- Published in the peer-reviewed AIAA Journal of Spacecraft and Rockets (2005)
- Adopted by commercial finite element software including MSC/NASTRAN as <u>default</u> (2002)
 - PARAM, MHRED, NO to override default
- Solves the <u>over-constrained</u> Hurty/Craig-Bampton convergence issues
- Exactly reduces to Hurty/Craig-Bampton for all fixed-boundary (all B-set)
- Exactly reduces to Rubin-MacNeal for all free-boundary (all C-set)
- Highly accurate for all mixed-boundary cases (B-set + C-set)
- Proven to have <u>no</u> "rank deficiency" issues
- Simplifies component damping matrix development
- All parameters may be directly derived from test, resulting in a more rigorous definition of test/analysis correlation
- Utilized on mission critical Shuttle/payloads Verification Loads Cycles



RFMB Coordinate Transformation (Cont'd)

 RFMB coordinate transformation exactly reduces to Hurty/Craig-Bampton for the all B-set case and Rubin/MacNeal for the all Cset case

 $\begin{vmatrix} x_b \\ x_o \end{vmatrix} = \begin{vmatrix} I_{bb} & 0 \\ \psi_{ob}^C & \phi_{ok}^N \end{vmatrix} \begin{pmatrix} x_b \\ q_k \end{pmatrix}$ Hurty/Craig-Bampton $\begin{vmatrix} x_{b} \\ x_{c} \\ x_{o} \end{vmatrix} = \begin{vmatrix} I_{bb} & 0 & 0 \\ 0 & I_{cc} & 0 \\ \psi_{ob}^{C} - {}^{R}g_{oc} {}^{R}g_{cc}^{-1}\psi_{cb}^{C} {}^{R}g_{oc} {}^{R}g_{cc}^{-1} \phi_{ok}^{N} - {}^{R}g_{oc} {}^{R}g_{cc}^{-1}\phi_{ck}^{N} \end{vmatrix} \begin{vmatrix} x_{b} \\ x_{c} \\ q_{k} \end{vmatrix}$ **Residual Flex Mixed-Boundary** $\begin{vmatrix} x_c \\ x_o \end{vmatrix} = \begin{vmatrix} I_{cc} & 0 \\ Rg_{cc} & Rg_{cc} & -Rg_{cc} & Rg_{cc} & -Rg_{cc} & -Rg$ Rubin Applied Structu 5

Example – 650,000 dofs Integrated Cargo Carrier (ICC) Finite Element Model

Numerical Results: RFMB vs. Hurty/Craig-Bampton: Percent Frequency Error

Mode #	Exact	RFMB	Guyan	H/CB	H/CB	H/CB	H/CB	H/CB	H/CB
	Frequency			+8 Modes	+15 Modes	+24 Modes	+42 Modes	+74 Modes	+242 Modes
	(Hz)			(100 Hz)	(150 Hz)	(200 Hz)	(250 Hz)	(300 Hz)	(400 Hz)
1	18.06	0	0.79	0.53	0.33	0.02	0.01	0.01	0
2	21.29	0	2.94	0.15	0.07	0.04	0.03	0.02	0
3	30.07	0	2.53	1.39	0.42	0.09	0.04	0.03	0.01
4	32.87	0	5.16	1.23	0.46	0.08	0.06	0.05	0
5	47.77	0	32.52	0.37	0.11	0.04	0.02	0.01	0.01
6	50.4	0	34.7	0.42	0.14	0.04	0.03	0.02	0
7	53.7	0	71.87	1.16	0.33	0.14	0.09	0.05	0.02
8	59.67	0	69.6	1.37	0.36	0.22	0.11	0.06	0.02
9	67.25	0	74.04	3.01	1	0.23	0.13	0.06	0.04
10	82.43	0	48.09	4.7	1.42	0.97	0.55	0.34	0.12
11	84.01	0	53.48	7.78	0.71	0.24	0.17	0.11	0.05
12	86.65	0	52.11	6.08	2.05	1.31	0.78	0.53	0.17
13	90.93	0	63.6	9.44	3.02	0.74	0.33	0.21	0.12
14	92.91	0		13.26	1.77	0.53	0.36	0.19	0.08
15	101.94	0		16.91	3.13	2.86	2.75	1.56	0.23
16	105.69	0		18.69	1.64	1.21	0.99	0.17	0.03
17	108.07	0		19.83	4.65	3.36	2.82	0.76	0.21
18	113.95	0		19.27	7.57	3.82	3.35	1.89	0.29
19	119.36	0			7.72	4.87	2.28	1.41	0.44
20	130.08	0			1.26	0.68	0.42	0.21	0.09
21	131.51	0			7.96	0.86	0.51	0.33	0.15
22	139	0				2.94	1.64	0.9	0.41
23	141.07	0				2.99	1.26	0.78	0.39
24	147.62	0						1.58	0.76

Note: It took 242 modes and 4 hours and 56 minutes of computation time for Hurty/Craig-Bampton to converge to RFMB's accuracy level with just 24 modes. RFMB's execution time: 59 minutes. Both problems executed on same machine running MSC/NASTRAN

Concluding Remarks

- RFMB is a generalization of Hurty/Craig-Bampton and Rubin/MacNeal
 - Bridges the gap between two methods previously thought to be completely unrelated
 - Exactly equal to Hurty/Craig-Bampton for the all-fixed-boundary case
 - Exactly equal to Rubin/MacNeal for the all-free-boundary case
 - Accurate and fast for mixed-boundary case
- RFMB utilized on critical programs such as Space Shuttle to develop dynamic math models for the Verification Loads Analyses (VLAs)
- RFMB affords tremendous flexibility and accuracy in component dynamic math model (DMM) development
 - e.g., greater modal convergence per number of reduced DMM degrees of freedom versus the classic use of over-constrained Hurty/Craig-Bampton formulation
- Default reduction method in MSC/NASTRAN
- Contact ASD if you have any questions:
 - Arya Majed, Chief Structural Dynamics/Advanced Methods
 - Arya.Majed@AppliedStructuralDynamics.com
 - Visit www.AppliedStructuralDynamics.com for more information

References

[1] Craig, R. R., Jr., "Coupling of Substructures for Dynamic Analyses: An Overview," AIAA-2000-1573, AIAA Dynamics Specialists Conf., Atlanta, Ga., April 2000.

[2] Hurty, W. C., "Dynamic Analysis of Structural Systems Using Component Modes," AIAA Journal, Vol. 3, No. 4, April 1965, pp. 678-685.

[3] Craig, R. R. Jr., and Bampton, M. C. C., "Coupling of Structures for Dynamic Analyses," AIAA Journal, Vol. 6, No. 7, July 1968, pp. 1313-1319.

[4] MacNeal, R. H., "A Hybrid Method of Component Mode Synthesis," J. of Computers and Structures, Vol. 1, No. 4, Dec. 1971, pp. 581-601.

[5] Rubin, S., "An Improved Component-Mode Representation," AIAA Journal, Vol. 13, No. 8, Aug. 1975, pp. 995-1006.

[6] Benfield, W. A., and Hruda, R. F., "Vibration Analysis of Structures by Component Mode Substitution," AIAA Journal, Vol. 9, No. 7, July 1971.

[7] Hintz, R. M., "Analytical Methods in Component Modal Synthesis," AIAA Journal, Vol. 13, No. 8, Aug. 1975, pp. 1007-1016.

[8] Collins, J. D., et. al., "Review and Development of Modal Synthesis Techniques," Tech. Rept. 1073-1, J. H. Wiggins Co. Redondo Beach, California.

[9] Majed, A., "An Improvement to Bamford's Modal Synthesis," Notes for CMS Technical Briefing, 1989, Rockwell International, Downey, California.

[10] Bamford, R. M. et. al., "Dynamic Analysis of Large Structural Systems," Synthesis of Vibrating Systems, ASME booklet, Nov. 1971, pp. 57-71.

[11] Lamontia, M. A., "On the Determination and Use of Residual Flexibilities, Inertia Restraints, and Rigid-Body Modes," *Proc.* 1st Int. Modal Analysis Conf., Union College, Schenectady, NY, 1982, 153-159.

[12] Martinez, D. M. and Gregory, D. L., "A Comparison of Free Component Mode Synthesis Techniques Using MSC/NASTRAN," Rep. SAND83-0025, Sandia Nat. Lab., Albuquerque, NM, June 1984.

[13] Klosterman, A. L., "On the Experimental Determination and Use of Modal Representations of Dynamic Characteristics," Ph.D. Thesis, 1971, Dept. of Mechanical Engineering, Univ. of Cincinnati, Cincinnati, Ohio.

[14] Wyle, C. R., "Determinants and Matrices," Chapter 10 in Advanced Engineering Mathematics, ^{3rd} Edition, McGraw-Hill, New York, 1960.

[15] Majed, A., Henkel, E. E., "A Residual Flexibility Mixed-Boundary Method in Component-Mode Synthesis," JPL Conference, 2002.

[16] Wilson, C., private communications, Jan. 2004.

