ASD/CLAS Variational Coupled Loads Analysis Capability

Impact of Component Parameter Uncertainties on Coupled Loads Analysis Results

Arya Majed, Ph.D. Chief, Structural Dynamics/Advanced Methods Applied Structural Dynamics, Inc. Arya.Majed@AppliedStructuralDynamics.com

ASD-TB-04-011 Updated: 2/02/2009

Background

 Variational (parametric) Coupled Loads Analyses (CLA) are the most accurate means to ascertain the impact of component parameter variations (uncertainties) on component loads

An important risk-mitigation exercise

 Detailed variational CLAs have historically been impractical given the schedules required by heritage commercial tools/processes

Background (Cont'd)

- As a result, risks associated with component parametric variations and nonlinearities are most often treated by approximate means
 - Base-shake analyses
 - Response Spectra Methods
 - Linearizations (valid within a very limited range)
 - Use of "uncertainty factors"
- This briefing addresses the ASD/CLAS Variational CLA capabilities

ASD/CLAS Variational CLA (VCLA)

- Allows for individual component parameter variations
 - Cantilevered frequencies
 - Overall stiffness
 - Boundary stiffness
 - Mass
 - Damping
 - Interface springs and dampers
 - Fluid mass and slosh mass (treated as separate body)
 - Nonlinearities
 - Deadband size
 - Absence, presence or substitution of components
 - Manifest variation

ASD/CLAS VCLA (Cont'd)

- Two variational options
 - <u>Deterministic parameter variation</u>: vary all selected parameter(s) within a user specified range and by a user specified increment, from nominal
 - <u>Probabilistic parameter variation</u>: vary all selected parameters utilizing a uniform or normal statistical distribution
 - Each parameter distribution defined by the analysts
 - Each parameter randomly selected for each CLA
 - Based on parameter's statistical distribution
 - Should produce worst-case loads given enough CLAs conducted in a Variational CLA

Majed, A., Partin, K. S., Henkel, E. E., and Sarafin, T. P., "Variational Coupled Loads Analyses: Reducing Risk in the Development of Space-Flight Hardware," Accepted for publication in *AIAA Journal of Spacecraft and Rockets,* Feb. 2004.

Application – Mission 1E VCLA

- <u>Purpose</u>: Develop realistic worst case <u>preliminary</u> design loads for the EuTEF and SOLAR payloads manifested on the new carrier ICC-L on Space Shuttle 1E Mission
- Desired to cover variations
 - +/- 20% frequency variations on the EuTEF and SOLAR payloads
 - Multiple possible Orbiter return manifests (5)
- Historical practice due to traditional tools limitations
 - 1 CLA "point" solution times 1.5 Uncertainty Factor (PDR)
- ASD contracted to conduct this Variational CLA (VCLA)
 - +/- 20% frequency variations @ 5% increments in stiffness (19 CLAs per configuration)
 - 1 Liftoff and 5 Landing Configurations (6 x 19 = 114 CLAs)

ICC-L Configuration for Mission 1E

50 Most Sensitive EuTEF Liftoff Internal Recoveries

Component frequency VCLA rigorously capture component structural sensitivities that are significant, even within accepted math model correlation criteria. This results in <u>Risk Mitigation</u>.

50 Most Sensitive EuTEF Liftoff Internal Recoveries

Component frequency VCLA rigorously capture component structural sensitivities that are significant, even within accepted math model correlation criteria. This results in <u>Risk Mitigation</u>.

Observations:

- VCLA demonstrated significant structural response sensitivities
 - Sensitivity to frequency variations of 5% and 10% shown to be significant for individual structural response items

Impact of Damping Approximation – Mission 1E

- ASD/CLAS variational frequency analysis performed with Diagonal System Damping (DSD) and Full Triple Matrix Product (FTMP) damping approximations
 - 1% critical damping utilized for DSD
 - 1% critical component damping utilized for FTMP
- SOLAR payload internal component responses recovered
 - FTMP generally results in <u>higher</u> responses
 - Difference between DSD and FTMP <u>highly</u> coupled to frequency variations

Impact of Damping Approximation - 50 <u>Most</u> Frequency Sensitive SOLAR Landing Internal Recoveries*

Internal responses' sensitivity to damping approximation <u>highly</u> coupled to component frequency!

Impact of Damping Approximation - 50 <u>Most</u> "DSD to FTMP" Sensitive SOLAR Landing Internal Recoveries

Internal responses' sensitivity to damping approximation highly coupled to component frequency!

Concluding Remarks

- It is clear that detailed variational CLA is the most accurate and reliable risk mitigation exercise for assessing the impact of component parameter uncertainties
- The required schedules for traditional CLA tools have been a prohibitive factor in conducting variational CLAs
 - We often have to rely on uncertainty factors
 - Penalize all component response items
 - Fails to envelope highly sensitive responses
- ASD/CLAS A significant value-added tool for our technical community
 - Significantly reduce risk, schedule, and cost
 - Visit www.appliedstructuraldynamics.com for more information on ASD/ CLAS and licensing

