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Executive Summary

● In 2005, the NASA Space Shuttle Program (SSP) 
initiated an effort to simulate/investigate the impact 
of component interface deadbands for liftoff and 
landing transient environments

● It was found that the deadband sizes in these 
systems can be significant contributors to the 
component transient environments

● Nonlinear transient coupled loads analyses (CLAs) 
were established as a mission critical analysis for 
flight hardware certification
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  2005 NASA Initiative

• Lockheed Martin, the SSP Cargo Mission 
Contractor, tasked to investigate the impact 
of complex component interfaces involving 
deadbands on Space Shuttle manifested 
component transient environments

– Next few slides show typical flight hardware
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FRAM

● Flight Releasable 
Attachment 
Mechanism (FRAM)

● Carries cargo to the 
ISS

● To be utilized on future 
launch programs such 
as Commercial Orbital 
Transportation 
Services (COTS) 

FRAM Based
Cargo

Passive
FRAM
Passive

FRAM Adapter

Carrier

Active
FRAM
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 AFRAM/PFRAM Interface 
Deadband Limits

 

 

Single Shear 

Single Shear 

Double Shear 

Clevis (typical) – 4 places 

+/- 0.0025+/- 0.0025

+/- 0.0055

+/- 0.0055

+/- 0.0065

+/- 0.0055

+/-0.0068

+/-0.0068
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Kinematic Mounts (KM)

Tension Only Y Shear + Tension X Shear + Tension
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KM Deadband Limits 
Battery FSE Attach Application

Fixed Shear directions (3 per Battery): +/- 0.0064”
Tension directions (6 per battery): +/- 0.0025”
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TUSRA
Internal & Interface Deadbands

● Trailing Umbilical System-
Reel Assembly (TUSRA)
● Deadbands at the launch 

restraints for the reel and 
control arm

● Deadbands at the bearings 
and reel and control arm 
hub

● Deadbands at the hinge pin 
and FSE clevis

● Deadbands at 
FRAM/PFRAM
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Arm and Reel Launch Locks

Max gap between tension 
arm and locking pin:

0.008" radially in plane 
normal to pin axis.

Max gap between reel 
and locking pin:

+/-.0215”
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TUSRA Restraint Pin Gap

Max gap between :
0.02" radially in plane 

normal to pin axis.
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Initial Nonlinear CLA Attempts
2005-2006

● Executed within NASTRAN nonlinear solution
● All NASTRAN nonlinear capabilities exercised
● Resulted in “unrealistic” time-histories
● Dominated what can be best described as 

“numerical noise/chatter”

● Next few slides show results from the initial 
Space Shuttle Mission 1E Nonlinear CLA
● 2 Components with nonlinear interfaces
● 16 deadbands in this nonlinear CLA
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Dominated by High Frequency 
Numerical Noise/Chatter

Numerical 
High Frequencies

Total of 16 Deadbands 
in this CLA
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Start-Up

Numerical 
High Frequencies
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No Improvements with
Decreasing Time-Steps 
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Shock Response Spectra

Numerical 
High Frequencies
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Shock Response Spectra

Numerical 
High Frequencies
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Attempted Filtering

Noise Filtering

If spikes are filtered, results are almost unchanged from results without 
gaps
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Investigated ADAMS 

● Geared towards single component analysis 
(base-drive) rather than coupled loads analysis

● Base-shake of TUSRA component conducted
● Again, results dominated by high frequency 

numerical noise/chatter
● Attempted filtering
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ADAMS Nonlinear 
Base-Shake & Filtering of TUSRA
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Nonlinear peak =4522.49

 LPF Max=2773.82

Nonlinear,la3_7113,"FLEX_arm_CG_AccX.Q"

 

 
Nonlinear
Low­Pass Filtered

Numerical 
High Frequencies
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NASA Investigation Expanded 
into other Vendor Capabilities: 2006
● NASA and Lockheed Martin began an 

investigation into other available vendor 
capabilities

● One candidate capability was successfully 
demonstrated in a 2004 Space Shuttle 
Technical Interchange Meeting (TIM) by Applied 
Structural Dynamics (ASD), Inc.
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ASD's Nonlinear Deadband 
CLA Capability Investigated: 2006

● NASA and Lockheed Martin performed a 
rigorous verification process 

● NASA investigation included all phases of 
methodology and numerical solution
● Resulting nonlinear time-histories were shown to be 

physically realizable and free of any numerical 
noise/chatter (no filtering required)

● Solution conformed to the physical parameters and 
constraints defined in the analysis
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  Zero Numerical Noise/Chatter
10 Nonlinear Components/78 Deadbands

Shuttle Mission 2J/A CLA: Landing

Shock Response 
Spectra

Screenshot
from 

ASD/CLAS
Software

Nonlinear Time-
History
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ASD's Nonlinear Deadband 
CLA Capability Selected

● 2006: NASA selected ASD's nonlinear 
deadband CLA capability to perform all Space 
Shuttle/payloads nonlinear CLAs

● Next few slides show results from Space 
Shuttle Mission 2J/A Nonlinear CLA
● 10 Components with nonlinear interfaces
● 78 deadbands in this nonlinear CLA
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2J/A Cargo Bay Liftoff 
Configuration
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2J/A ICC-VLD Liftoff 
Configuration

Aft View: 6 Kinematic Mounted Batteries
1 2 3

4 5 6

Fwd View: 3 FRAM Based ORUs
                - Pump Module
                - LDU
                - SGANT
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Deadband Dynamic Testing

● NASA conducted 
dynamic testing to 
simulate KM deadbands

● Sine-burst input
● Varying amplitudes
● Nominal & Increased gap 

size cases

● Measure interface 
forces and dummy 
mass accelerations
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Test Setup

● Test hardware 
Red arrows depict dedicated shear force reactions
All 4 fittings react Z forces
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Test Results

● Interface force amplifications of up to 2.83 
times the linear (shimmed) interface force 
measured due to the KM deadbands
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Test/Analysis Comparisons

● NASA Ground Rules:
● Run nonlinear simulation of each test
● Perform comparisons
● Do not perform any correlation

– Supply comparison results “as is”
● Do not simulate friction

– Test friction levels small/moderate in X & Z

– Test friction levels significant in Y (
● Faulty surface treatment caused dry lube film to wear off quickly
● Too far removed from “zero friction” simulation requirement to 

provide a meaningful comparison
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Run-41X: F3 X Force

Red: Simulation
Black: Test
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Run-41X: F4 X Force

Red: Simulation
Black: Test
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Run-41X: F3 Z Force

Red: Simulation
Black: Test
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Run-41X: X Force Summation

Red: Simulation
Black: Test
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Run-41X: Top Mass X 
Acceleration
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Run-16Z: F1 Z Force

Red:Simulation
Black: Test
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Run-16Z: F2 Z Force

Red: Simulation
Black: Test
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Run-16Z: F3 Z Force

Red: Simulation
Black: Test
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Run-16Z: F4 Z Force
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Run-16Z: Top Mass Z 
Acceleration

Red: Simulation
Black: Test

-20

-15

-10

-5

0

5

10

15

20

0.00 0.20 0.40 0.60 0.80 1.00



52

Run-51X: F4 X Force
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Run-51X: X Force Summation
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Run-51X: F3 Z Force
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Run-51X: Top Mass X 
Acceleration
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Space Shuttle Mission ULF-3

● A “massive” nonlinear CLA conducted by Lockheed 
Martin
● 40 components with nonlinear interfaces

– Components with deadbands on both sides of the interface
● 453 deadbands
● Included TUSRA with deadbands at four separate 

interfaces

● Solved with a 0.001 second time-step with 
ASD/CLAS software
● Zero numerical noise/chatter in any component 

recoveries
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Component Interface Force
40 Nonlinear Components/453 Deadbands

Screenshot
from 

ASD/CLAS
Software

Shuttle Mission ULF3 CLA: Landing

Nonlinear Time-
History

Shock Response 
Spectra
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Summary

● In 2005, NASA Space Shuttle Program (SSP) 
initiated an investigation to assess the impact of 
the component interface deadbands on transient 
environments 

● Nonlinear CLAs with heritage tools resulted in 
“unrealistic” time-histories

● In 2006, NASA and Lockheed Martin 
investigated, verified, and selected ASD's 
nonlinear CLA capability
● Later, anchored to test
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Summary – Cont'd

● Since 2006, 21 Space Shuttle/payloads 
nonlinear transient CLAs have been conducted 
for the NASA to design and certify payloads
● First 4 by ASD
● Next 17 by Lockheed Martin utilizing the ASD/CLAS 

software 
● Nonlinear CLAs in the SSP are continuing to this 

day
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Concluding Remarks

● Impact of small deadbands on component 
transient environments can be significant

● Accuracy of the nonlinear CLA solution is 
paramount!
● The analytical problem is extremely complex
● Filtering unrealistic nonlinear solutions for a 

better answer is highly discouraged
● Future launch services (COTS, …) to utilize the 

same flight hardware for cargo deliveries to the 
ISS 
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