

Accurate Determination of the Impact of Interface Deadband Nonlinearities on Component Transient Environments

Sagar Vidyasager, Technical Fellow, Lockheed Martin Sundeep Bhatia, Senior Loads & Dynamics Engineer, Lockheed Martin Vincent Fogt, Chairman, Structures Working Group, NASA/JSC Arya Majed, Ph.D., Structural Dynamics/Advanced Methods, ASD

Lockheed Martin Corporation (www.lockheedmartin.com) NASA/JSC Structures & Mechanical Branch (www.nasa.gov) Applied Structural Dynamics (ASD), Inc. (www.appliedstructuraldynamics.com) June 8-10, 2010

© The Aerospace Corporation 2010

Executive Summary

- In 2005, the NASA Space Shuttle Program (SSP) initiated an effort to simulate/investigate the impact of component interface deadbands for liftoff and landing transient environments
- It was found that the deadband sizes in these systems can be <u>significant</u> contributors to the component transient environments
- <u>Nonlinear</u> transient coupled loads analyses (CLAs) were established as a <u>mission critical</u> analysis for flight hardware certification

2005 NASA Initiative

 Lockheed Martin, the SSP Cargo Mission Contractor, tasked to investigate the impact of complex component interfaces involving deadbands on Space Shuttle manifested component transient environments

- Next few slides show typical flight hardware

LOCKHEED MAR

FRAM

- Flight Releasable Attachment Mechanism (FRAM)
- Carries cargo to the ISS
- To be utilized on futureFRAM Adapter launch programs such Carrier as Commercial Orbital Transportation Services (COTS)

AFRAM/PFRAM Interface Deadband Limits

Applied

Structural

Dynamics, Inc.

Kinematic Mounts (KM)

Y Shear + Tension

X Shear + Tension

KM Deadband Limits Battery FSE Attach Application

Fixed Shear directions (3 per Battery): +/- 0.0064" Tension directions (6 per battery): +/- 0.0025"

CHEED MA

TUSRA Internal & Interface Deadbands

- Trailing Umbilical System-Reel Assembly (TUSRA)
 - Deadbands at the launch restraints for the reel and control arm
 - Deadbands at the bearings and reel and control arm hub
 - Deadbands at the hinge pin and FSE clevis
 - Deadbands at FRAM/PFRAM

TUSRA Restraint Pin Gap

Initial Nonlinear CLA Attempts 2005-2006

- Executed within NASTRAN nonlinear solution
 - All NASTRAN nonlinear capabilities exercised
 - Resulted in "unrealistic" time-histories
 - Dominated what can be best described as "numerical noise/chatter"
- Next few slides show results from the initial Space Shuttle Mission 1E Nonlinear CLA
 - <u>2</u> Components with nonlinear interfaces
 - <u>16</u> deadbands in this nonlinear CLA

Dominated by High Frequency Numerical Noise/Chatter

Start-Up

No Improvements with Decreasing Time-Steps

Applied Structural Dynamics, Inc.

Shock Response Spectra

Shock Response Spectra

Attempted Filtering

If spikes are filtered, results are almost unchanged from results without gaps

Investigated ADAMS

- Geared towards single component analysis (base-drive) rather than coupled loads analysis
- Base-shake of TUSRA component conducted
- Again, results dominated by high frequency numerical noise/chatter
 - Attempted filtering

ADAMS Nonlinear Base-Shake & Filtering of TUSRA

Applied

Structural

Dynamics, Inc.

LOCKHEED MARTIN

NASA Investigation Expanded into other Vendor Capabilities: 2006

- NASA and Lockheed Martin began an investigation into other available vendor capabilities
- One candidate capability was successfully demonstrated in a 2004 Space Shuttle Technical Interchange Meeting (TIM) by Applied Structural Dynamics (ASD), Inc.

ASD's Nonlinear Deadband CLA Capability Investigated: 2006

- NASA and Lockheed Martin performed a rigorous verification process
- NASA investigation included all phases of methodology and numerical solution
 - Resulting <u>nonlinear</u> time-histories were shown to be physically realizable and free of any numerical noise/chatter (no filtering required)
 - Solution conformed to the physical parameters and constraints defined in the analysis

CKHEED MAR

Zero Numerical Noise/Chatter <u>10</u> Nonlinear Components/<u>78</u> Deadbands

LOCKHEED MARTI

Screenshot from ASD/CLAS Software

Applied Structural Dynamics, Inc.

ASD's Nonlinear Deadband CLA Capability <u>Selected</u>

- 2006: NASA selected ASD's nonlinear deadband CLA capability to perform all Space Shuttle/payloads nonlinear CLAs
- Next few slides show results from Space Shuttle Mission 2J/A Nonlinear CLA
 - <u>10</u> Components with nonlinear interfaces
 - <u>78</u> deadbands in this nonlinear CLA

2J/A Cargo Bay Liftoff Configuration

Applied

Structural

Dynamics, Inc.

2J/A ICC-VLD Liftoff Configuration

Aft View: 6 Kinematic Mounted Batteries

Fwd View: 3 FRAM Based ORUs

- Pump Module
- LDU
- SGANT

CKHEED MARTIN 🦯

Battery KM Zo Shear Force Liftoff

Battery 5: Shear Force (Node 653, Zorb) and Relative Displacement – (Blue Line x 40000) Forcing Function: CLO1001; 7.5-8.5 second segment

Applied

Structural

Dvnamics. Inc.

CKHEED MARTI

Battery KM Yo Shear Force Liftoff

Battery 5: Shear Force (Node 655, Yorb) and Relative Displacement – (Blue Line x 40000) Forcing Function: CLO1001; 7.5-8.5 second segment

27

Structural

Dynamics, Inc.

CKHEED MART

Battery KM Zo Shear Force Liftoff

Battery 5: Shear Force (Node 2183, Zorb) and Relative Displacement – (Blue Line x 40000) Forcing Function: CLO1001; 7.5-8.5 second segment

28

Structural

Dynamics, Inc.

Battery KM Interface Rel. Displ. Liftoff

Battery KM Zo Shear Force Landing

Battery 5: Shear Force (Node 653, Zorb) and Relative Displacement – (Blue Line x 40000) Forcing Function: LG7525 30 30

CKHEED

Battery KM Yo Shear Force Landing

Battery 5: Shear Force (Node 655, Yorb) and Relative Displacement – (Blue Line x 40000) Forcing Function: LG7525 Applied 31

Structural

Dynamics, Inc.

CKHEED

Battery KM Zo Shear Force Landing

Battery 5: Shear Force (Node 2183, Zorb) and Relative Displacement – (Blue Line x 40000) Forcing Function: LG7525 Applied Structural

Dynamics, Inc.

Battery KM Interface Rel. Displ. Landing

Convergence Battery KM Zo Shear Force

Forcing Function: LG7525

LOCKHEED MARTIN

Applied

Structural

Dvnamics. Inc.

Convergence Battery KM Yo Shear Force

Convergence Battery KM Zo Shear Force

36

Applied Structural Dynamics, Inc.

Pump Module Zo Shear Force Landing Linear

PM: Single Shear Interface Force (Zorb) and Relative Displacement – (Blue Line x 20000) Forcing Function: LF7101 Applied Structural LOCKHEED MART

Dvnamics, Inc.

NASA

Deadband Dynamic Testing

- NASA conducted dynamic testing to simulate KM deadbands
- Sine-burst input
 - Varying amplitudes
 - Nominal & Increased gap size cases
- Measure interface forces and dummy mass accelerations

Test Setup

Test hardware

Red arrows depict <u>dedicated</u> shear force reactions All 4 fittings react Z forces

Figure 2-3. Force transducer locations.

Test Results

 Interface force amplifications of up to <u>2.83</u> times the linear (shimmed) interface force measured due to the KM deadbands

		Sine Burst Run			
		-12 dB	-6 dB	-3 dB	-0 dB
	Control Max Accel (g)	2.39	4.76	6.72	9.54
	A5 Response Max Accel (g)	4.4	9	10.64	14.43
	Accel Amplification Factor	1.84	1.89	1.58	1.51
	Linear Interface Force (lbs)	469	934	1319	1872
Max In-Axis Force (lbs)	F11 & F12	946	1682	1882	2545
	F21 & F22	1093	1925	2116	2583
	F31 & F32	1322	1977	2432	3016
	F41 & F42	1163	2119	2485	3463
Force Amplification Factor	F11 & F12	2.02	1.80	1.43	1.36
	F21 & F22	2.33	2.06	1.60	1.38
	F31 & F32	2.82	2.12	1.84	1.61
	F41 & F42	2.48	2.27	1.88	1.85
	Avg. Force Amp. Factor	2.41	2.06	1.69	1.55

Table 3-1. Z-Axis sine burst data summary.

Test/Analysis Comparisons

- NASA Ground Rules:
 - Run nonlinear simulation of each test
 - Perform comparisons
 - Do not perform any correlation
 - Supply comparison results "as is"
 - Do not simulate friction
 - Test friction levels small/moderate in X & Z
 - Test friction levels significant in Y (μ =0.22)
 - Faulty surface treatment caused dry lube film to wear off quickly
 - Too far removed from "zero friction" simulation requirement to provide a meaningful comparison

Run-41X: F3 X Force

Run-41X: F4 X Force

Run-41X: F3 Z Force

Run-41X: X Force Summation

Run-41X: Top Mass X Acceleration

Time History

Run-16Z: F1 Z Force

Run-16Z: F2 Z Force

Applied

Structural

Dynamics, Inc.

Run-16Z: F3 Z Force

Structural

Dynamics, Inc.

LOCKHEED MARTIN

Run-16Z: F4 Z Force

Run-16Z: Top Mass Z Acceleration Time History

52

Dynamics, Inc.

LOCKHEED MARTIN

Run-51X: F3 Z Force

Run-51X: Top Mass X Acceleration

Space Shuttle Mission ULF-3

- A "massive" nonlinear CLA conducted by Lockheed Martin
 - 40 components with nonlinear interfaces
 - Components with deadbands on both sides of the interface
 - 453 deadbands
 - Included TUSRA with deadbands at <u>four</u> separate interfaces
- Solved with a 0.001 second time-step with ASD/CLAS software
 - Zero numerical noise/chatter in any component recoveries

Component Interface Force 40 Nonlinear Components/453 Deadbands

Screenshot from ASD/CLAS Software

Dvnamics, Inc.

LOCKHEED MAR

Summary

- In 2005, NASA Space Shuttle Program (SSP) initiated an investigation to assess the impact of the component interface deadbands on transient environments
- Nonlinear CLAs with heritage tools resulted in "unrealistic" time-histories
- In 2006, NASA and Lockheed Martin investigated, verified, and selected ASD's nonlinear CLA capability
 - Later, anchored to test

Summary – Cont'd

- Since 2006, <u>21</u> Space Shuttle/payloads <u>nonlinear</u> transient CLAs have been conducted for the NASA to design and certify payloads
 - First 4 by ASD
 - Next 17 by Lockheed Martin utilizing the ASD/CLAS software
 - Nonlinear CLAs in the SSP are continuing to this day

Concluding Remarks

- Impact of small deadbands on component transient environments can be significant
- Accuracy of the nonlinear CLA solution is paramount!
 - The analytical problem is extremely complex
 - Filtering unrealistic nonlinear solutions for a better answer is highly discouraged
- Future launch services (COTS, ...) to utilize the same flight hardware for cargo deliveries to the ISS

